Initial commit.

This commit is contained in:
daniel 2018-12-28 14:10:19 +01:00
commit 2fbfa7aa6e
3 changed files with 95 additions and 0 deletions

7
.gitignore vendored Normal file
View File

@ -0,0 +1,7 @@
.Rproj.user
.Rhistory
.RData
.Ruserdata
*.pdf
*.html
*-figure/

16
VHK.Rproj Normal file
View File

@ -0,0 +1,16 @@
Version: 1.0
RestoreWorkspace: Default
SaveWorkspace: Default
AlwaysSaveHistory: Default
EnableCodeIndexing: Yes
UseSpacesForTab: Yes
NumSpacesForTab: 2
Encoding: UTF-8
RnwWeave: Sweave
LaTeX: pdfLaTeX
AutoAppendNewline: Yes
StripTrailingWhitespace: Yes

72
vhk.Rmd Normal file
View File

@ -0,0 +1,72 @@
---
title: "Vorhofkatheter-Statistik"
author: "Daniel Kraus"
date: '2018-12-30'
output:
ioslides_presentation: default
beamer_presentation: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE)
library(tidyverse)
raw_data = read_csv('vhk.csv') %>%
mutate(Year = lubridate::year(Date))
cath_by_year = raw_data %>% count(Year)
first_year = min(raw_data$Year)
last_year = max(raw_data$Year)
max_y_break = ((max(cath_by_year$n) %/% 10) + 1) * 10
```
## Katheterimplantationen pro Jahr
```{r cath_by_year }
cath_by_year %>%
ggplot(aes(x = Year, y = n)) +
geom_col() +
scale_y_continuous(breaks = seq(from = 0, to = max_y_break, by = 10)) +
scale_x_continuous(breaks = seq(from = first_year, to = last_year, by = 1)) +
labs(x = NULL, y = NULL)
```
## Alter der Patienten
```{r patient_age}
raw_data %>%
ggplot(aes(group = Year, x = Year, y = Age)) +
geom_boxplot() +
coord_cartesian(ylim = c(20, 100)) +
scale_x_continuous(breaks = seq(from = first_year, to = last_year, by = 1)) +
scale_y_continuous(breaks = seq(from = 20, to = 100, by = 10)) +
labs(x = NULL, y = NULL)
```
## Geschlecht der Patienten
```{r patient_sex}
raw_data %>% group_by(Year) %>% summarise(PercentFemale = sum(Sex == "weiblich") / n()) %>%
ggplot(aes(x = Year, y = PercentFemale)) +
geom_col() +
scale_x_continuous(breaks = seq(from = first_year, to = last_year, by = 1)) +
scale_y_continuous(labels = scales::percent_format(accuracy = 1)) +
labs(x = NULL, y = "Anteil Frauen")
```
## Hitparade der Implanteure
```{r greatest_surgeons}
raw_data %>% count(Surgeon) %>% arrange(n) %>% top_n(10, n) %>% mutate(Surgeon = factor(Surgeon, levels = Surgeon)) %>%
ggplot(aes(x = Surgeon, y = n)) +
geom_col() +
coord_flip() +
labs(x = NULL, y = NULL)
```
## Hitparade der Assistenten
```{r greatest_assistants}
raw_data %>% count(Assistant) %>% arrange(n) %>% top_n(10, n) %>% mutate(Assistant = factor(Assistant, levels = Assistant)) %>%
ggplot(aes(x = Assistant, y = n)) +
geom_col() +
coord_flip() +
labs(x = NULL, y = NULL)
```